Synchronal Algorithm and Cyclic Algorithm for Hierarchical Fixed Point Problems and Variational Inequalities

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On synchronal algorithm for fixed point and variational inequality problems in hilbert spaces

The aim of this article is to expand and generalize some approximation methods proposed by Tian and Di (J Fixed Point Appl, 2011. doi:10.1186/1687-1812-21) to the class of [Formula: see text]-total asymptotically strict pseudocontraction to solve the fixed point problem as well as variational inequality problem in the frame work of Hilbert space. Further, the results presented in this paper ext...

متن کامل

On a Two-Step Algorithm for Hierarchical Fixed Point Problems and Variational Inequalities

A common method in solving ill-posed problems is to substitute the original problem by a family of well-posed i.e., with a unique solution regularized problems. We will use this idea to define and study a two-step algorithm to solve hierarchical fixed point problems under different conditions on involved parameters. We will see that choosing appropriate hypotheses on the parameters, we will obt...

متن کامل

Strong convergence for variational inequalities and equilibrium problems and representations

We introduce an implicit method for nding a common element of the set of solutions of systems of equilibrium problems and the set of common xed points of a sequence of nonexpansive mappings and a representation of nonexpansive mappings. Then we prove the strong convergence of the proposed implicit schemes to the unique solution of a variational inequality, which is the optimality condition for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2013

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2013/750473